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Abstract When the number of observations is large, it is computationally challenging to apply classical
inverse modeling techniques. We have developed a new computationally efficient technique for solving
inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method,
which we call the randomized geostatistical approach (RGA), is built upon the principal component geostat-
istical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the
computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical
linear algebra technique based on a so-called ‘‘sketching’’ matrix to effectively reduce the dimension of the
observations without losing the information content needed for the inverse analysis. In this way, the
computational and memory costs for RGA scale with the information content rather than the size of the
calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-
performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method
to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our
method is more efficient when the number of observations is large. Most importantly, our method is
capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new
model inversion method is a powerful tool for solving large-scale inverse problems. The method can be
applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer
heterogeneity.

1. Introduction

The permeability of a porous medium is of great importance for predicting flow and transport of fluids
and contaminants in the subsurface [Carrera and Neuman, 1986; Sun, 1994; Carrera et al., 2005]. A well-
understood distribution of permeability can be crucial for many different subsurface applications, such as
(1) forecasting production performance of geothermal reservoirs, (2) extracting oil and gas, (3) estimating
pathways of subsurface contaminant transport, and many others.

Various hydraulic inversion methods have been proposed to obtain subsurface permeability [Neuman and Yako-
witz, 1979; Neuman et al., 1980; Carrera and Neuman, 1986; Sun, 1994; Kitanidis, 1997a; Zhang and Yeh, 1997; Car-
rera et al., 2005], of which geostatistical inversion approaches are the most widely used [Kitanidis, 1995; Zhang
and Yeh, 1997; Kitanidis, 1997a, 1997b; Vesselinov et al., 2001a]. Geostatistical inversion can be more advanta-
geous than many other subsurface inverse modeling methods in that not only can it provide uncertainty esti-
mates, but it is also suitable for sequential data assimilation [Vesselinov et al., 2001a, 2001b; Illman et al., 2015;
Yeh and Simunek, 2002]. However, as pointed out in Vesselinov et al. [2001b] and Illman et al. [2015], one draw-
back of geostatistical inversion methods is its high-computational cost when the number of observations is large
and the model is highly parameterized. In recent years, with the help of regularization techniques [Tarantola,
2005; Engl et al., 1996], there is a trend to increase the number of model parameters [Hunt et al., 2007]. It has
been suggested that these highly parameterized models have great potential for characterizing subsurface het-
erogeneity [Tonkin and Doherty, 2005; Hunt et al., 2007]. Meanwhile, as the theory and computational tools for
subsurface characterization quickly move into the new era of ‘‘big data,’’ many existing methodologies are facing
the challenge of handling a large number of unknown model parameters and observations. Therefore, it is
important to address the theoretical and computational issues of the geostatistical inversion methods.

The costs related to geostatistical inversion methods can be broken into two parts: the computational cost
and the memory cost. A number of computational techniques have been proposed to alleviate the costs of
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computation [Saibaba and Kitanidis, 2012; Liu et al., 2013; Ambikasaran et al., 2013; Liu et al., 2014; Lee and
Kitanidis, 2014; Lin et al., 2016] or memory [Nowak et al., 2003; Schoniger et al., 2012; Saibaba and Kitanidis,
2012; Kitanidis and Lee, 2014; Lee and Kitanidis, 2014]. Some studies targeted both computation and mem-
ory costs [Saibaba and Kitanidis, 2012; Kitanidis and Lee, 2014; Lee and Kitanidis, 2014].

One major direction to reduce the computational cost is based on subspace approximations, i.e., solving a
small-size approximated problem residing in a lower-dimensional subspace. Several types of subspaces
have been utilized, including principle component subspaces [Kitanidis and Lee, 2014; Lee and Kitanidis,
2014; Tonkin and Doherty, 2005], Krylov subspaces [Lin et al., 2016; Liu et al., 2014; Saibaba and Kitanidis,
2012], subspaces spanned by reduced-order models [Liu et al., 2014], hierarchical matrix decompositions
[Ambikasaran et al., 2013; Saibaba and Kitanidis, 2012], and active subspaces [Constantine et al., 2014].

In geostatistical inversion methods, a majority of the memory is used in storing the matrices, such as the
Jacobian matrix and the covariance matrix [Kitanidis and Lee, 2014; Lee and Kitanidis, 2014]. In situations
with a large number of measurements and model parameters, it is prohibitively expensive to store these
matrices. To overcome the memory issues, matrix-free or low-rank approximation methods have been
developed. Specifically, Kitanidis and Lee [2014] and Lee and Kitanidis [2014] developed a matrix-free Jaco-
bian to approximate the multiplication of the Jacobian matrix with a vector by finite-difference operations.
To further reduce the memory cost associated with storing the covariance matrices, various computational
methods have been developed. Nowak et al. [2003] developed FFT-based geostatistical inversion method,
which is restricted to regular grids, but it only needs to store the first line of the covariance matrix. Ensem-
ble Kalman filters (EnKFs) and related methods have also been proposed for geostatistical inversion to avoid
the storage and handling of large covariance matrices [Schoniger et al., 2012]. Low-rank matrix
approximation-based techniques have also been employed, such as hierarchical decomposition
[Ambikasaran et al., 2013; Saibaba and Kitanidis, 2012] and principal component decomposition [Kitanidis
and Lee, 2014; Lee and Kitanidis, 2014]. Recent work [Lee et al., 2016] reported a computationally efficient
method to generate a preconditioner by using Generalized Eigenvalue Decomposition and the
Sherman-Morrison-Woodbury formula. Another popular computational method to reduce the data size and
computational cost is based on the extraction of temporal moments from large data sets [Yin and Illman,
2009; Zhu and Yeh, 2006; Nowak and Cirpka, 2006; Cirpka and Kitanidis, 2000].

Randomized algorithms have received a great deal of attention in recent years [Drineas and Mahoney,
2016]. They can be seen as either sampling or projection procedures [Mahoney, 2011]. Their main idea is to
construct a sketch matrix of the input matrix. The sketch matrix is usually a smaller matrix that yields a
good approximation and represents the essential information of the original input. In essence, a sketching
matrix is applied to the data to obtain a sketch that can be employed as a surrogate for the original data to
compute quantities of interest [Drineas and Mahoney, 2016]. Randomized algorithms have been successfully
applied to various scientific and engineering domains, such as scientific computation and numerical linear
algebra [Le et al., 2017; Meng et al., 2014; Drineas et al., 2011; Lin et al., 2010; Rokhlin and Tygert, 2008], seis-
mic full-waveform inversion and tomography [Moghaddam et al., 2013; Krebs et al., 2009], and medical imag-
ing [Huang et al., 2016; Wang et al., 2015; Zhang et al., 2012].

Here we present a new geostatistical inversion method using a randomization-based data reduction tech-
nique to reduce both the computation and memory costs. We use Gaussian projection to produce the sketch-
ing matrix [Johnson and Lindenstrauss, 1984] in a matrix and a direct linear solver to obtain the solution of the
surrogate problem. A numerical cost analysis will show that our new randomized geostatistical inversion
method improves the computational efficiency and reduces memory cost significantly. To evaluate the perfor-
mance of our new randomized geostatistical inversion method, a test case is presented where a transmissivity
field is estimated from observations of hydraulic head. By comparing the results with those obtained using
the conventional principal component geostatistical approach, we show that our method significantly reduces
the computational and memory costs while maintaining the accuracy of the inversion results.

In the following sections, we first briefly describe the fundamentals of inverse modeling and geostatistical
inversion methods (section 2). We then develop and discuss a randomized geostatistical inversion method
(section 3). We further elaborate on the computational and memory costs of our method (section 4). We
then apply our method to test problems and discuss the results (section 5). Finally, concluding remarks are
presented in section 6.
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2. Theory

2.1. Inverse Modeling
We consider a transient groundwater flow equation. The forward modeling problem can be written as:

h5f ðTÞ1E; (1)

where h is the hydraulic head, T is the transmissivity, f ðTÞ is the nonlinear forward operator mapping from
the transmissivity to the hydraulic head, and E is a term representing additive noise that follows a normal
distribution:

E � Nð0;RÞ; (2)

where R is the error covariance matrix.

The problem of hydrogeologic inverse modeling is to estimate the transmissivity from available measure-
ments. Usually, such a problem is posed as a minimization problem:

m̂5arg min
m
jjd2f ðmÞjj22
n o

; (3)

where d represents a hydraulic head data set and m is the vector of model parameters, jjd2f ðmÞjj22 mea-
sures the data misfit, and jj � jj2 stands for the L2 norm. Minimizing equation (3) yields a model m̂ that mini-
mizes the mean-squared difference between observed data and model predictions. However, inverse
problems are often severely ill-posed. Moreover, because of the nonlinearity of the forward modeling oper-
ator f, the solution of the inverse problem may be nonunique and null sets of parameters might provide
acceptable inverse solutions. Regularization techniques can be used to address the nonuniqueness of the
solution and reduce the ill-posedness of the inverse problem. A general regularization term can be incorpo-
rated into equation (3) as [Vogel, 2002; Hansen, 1998]:

m̂5arg min
m

lðmÞf g; (4)

5arg min
m
jjd2f ðmÞjj221kRðmÞ
n o

; (5)

where RðmÞ is a general regularization term and the parameter k is the regularization parameter, which
controls the amount of regularization in the inversion.

2.2. Geostatistical Inverse Modeling
To account for the errors in the observations and the model, we follow the work of Kitanidis and Lee [2014]
and Lee and Kitanidis [2014], and employ the generalized least squares approach that produces weights to
the data misfit and regularization terms in equation (5) using covariance matrices:

m̂5arg min
m

gðmÞf g5arg min
m
jjd2f ðmÞjj2R1kRðmÞ
n o

; (6)

The weighted data misfit and regularization terms are defined as:

jjd2f ðmÞjj2R5ðd2f ðmÞÞT R21ðd2f ðmÞÞ; (7)

and

RðmÞ5ðm2ðXbÞÞT Q21ðm2ðXbÞÞ; (8)

where X is a drift (trend) matrix, Q is the covariance matrix of the model parameters, and R is defined in
equation (2).

Using the Jacobian matrix H of the forward modeling operator f defined as:

H5
@f
@m

����
m5 �m

; (9)

the linearized function of the forward modeling operator f can be defined as:
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f ðm̂Þ � f ð �mÞ1Hðm̂2 �mÞ; (10)

where m̂ is the current solution and �m is the previous solution. Following Kitanidis [1997b] and Nowak and
Cirpka [2004], the current solution m̂ in equation (10) is given by:

m̂5Xb1QHT n; (11)

where the vectors of b and n are solutions to the linear system of equations:

HQHT 1R HX

ðHXÞT 0

" #
n

b

" #
5

y2f ð �mÞ1H �m

0

" #
: (12)

2.3. Computational Approaches for Solving Geostatistical Inverse Modeling
The most computational and memory intensive parts of solving the geostatistical inverse model in equation
(12) are the construction of the Jacobian matrix, H, and the matrix products involves the Jacobian, particu-
larly HQ in equation (12). Various techniques are employed to address these issues. In Kitanidis and Lee
[2014] and Lee and Kitanidis [2014], the principal component geostatistical approach (PCGA), a seminal com-
putational method in solving the geostatistical inverse model, is proposed and developed. To bypass the
expensive explicit construction of the Jacobian matrix, a finite difference scheme is used to approximate a
generic Jacobian-vector multiplication of Hx, i.e.:

Hx � 1
d

f ðx1dxÞ2f ðxÞ½ �; (13)

where x is a n-dimensional vector and d is the finite difference interval. Furthermore, a low-rank approxima-
tion of the covariance matrix Q is used

Q � Qk5ZT Z5
Xk

i51

fi f
T
i ; (14)

where Qk is the rank-k approximation of the covariance matrix Q, Z is the square root of Qk obtained using
eigen decomposition, and fi is the ith column vector of Z. Based on equations (13) and (14), the expensive
matrix-matrix operations of HQ and HQHT can be reformulated as matrix-vector operations

HQ � HQk5H
Xk

i51

fif
T
i 5
Xk

i51

ðHfiÞfT
i ; (15)

HQHT � HQkHT 5
Xk

i51

ðHfiÞðHfiÞT : (16)

Another computational technique to reduce the cost of matrix products with the Jacobian matrix is to use a
hierarchical representation of the covariance matrix [Saibaba and Kitanidis, 2012]. The hierarchical represen-
tation of a matrix is accomplished by having split the given matrix into a hierarchy of rectangular blocks
and approximating each of the blocks by a low-rank matrix [Saibaba and Kitanidis, 2012; Bebendorf, 2008;
Borm et al., 2003].

With the Jacobian matrix obtained approximately, two main categories of numerical methods have been
developed to solve the linear system of equations in equation (12). One is based on direct solvers [Lee and
Kitanidis, 2014; Kitanidis and Lee, 2014] and the other is based on iterative solvers [Liu et al., 2014; Saibaba
and Kitanidis, 2012; Nowak and Cirpka, 2004]. Direct solvers are mostly used in situations when the size of
problems ranges from small to medium scale and the system matrix in equation (12) can therefore be
explicitly constructed [Lee and Kitanidis, 2014; Kitanidis and Lee, 2014]. As pointed out in Lee and Kitanidis
[2014], direct solvers can be used to solve dense linear systems of dimension up to n � Oð104Þ. For large-
scale problems (dimension n > Oð104Þ), matrix-free representations can be used, and Krylov-subspace
based iterative solvers such as GMRES [Saad and Schultz, 1986] or MINRES [Paige and Saunders, 1975] are
favored over direct methods to solve equation (12) [Liu et al., 2014; Saibaba and Kitanidis, 2012].

The use of direct solvers or iterative solvers to solve equation (12) can be memory bound [Lee and Kitanidis,
2014; Kitanidis and Lee, 2014]. Such a limitation can significantly reduce the computational efficiency when
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a large number of measurements are available. In particular, it can be observed from equation (12) that the
number of equations is of the same order as the number of the measurements. In many subsurface applica-
tions, it is increasingly common to calibrate models using a very large number of observations (e.g., Oð107Þ
or more). Using the computational techniques discussed above to solve linear system of equations of
such a scale is beyond the computability and storage capacity of any method regardless of the choice of
direct or iterative solvers. As pointed out in Kitanidis and Lee [2014], the computational methodologies dis-
cussed so far work best for problems with a modest number of observations. Therefore, there is a need to
develop computational methods that allow an efficient solution of equation (12) with a large number of
measurements.

There have been some studies addressing this important need for data reduction to reduce computational
and storage costs. In Lee et al. [2016], PCGA was extended to handle data-intensive inverse problems by
constructing a fast preconditioner of the cokriging matrix leading to accelerated iterative matrix inversion.
Specifically, using a similar notation as Lee et al. [2016], W5HQHT 1R; U5HX, and S5UT W21U, the exact
inversion of the system matrix in equation (12) can be written as:

HQHT 1R HX

ðHXÞT 0

" #21

5
W U

UT 0

" #21

5
W212W21US21UT W21 W21US21

S21UT W21 2S

" #
: (17)

By further employing the Sherman-Morrison-Woodbury formula and Generalized Eigenvalue Decomposi-
tion (GED) [Golub and Van Loan, 1996], the dominant cost of solving W21 can be significantly reduced by
low-rank approximation, while the overall accuracy is well maintained. It has been pointed out in Lee
et al. [2016] that GED can be efficiently implemented by using either the sequential Lanczos-based
method or the parallelized randomized SVD method. Lee et al. [2016] concluded that this computational
technique can be either used as a direct solver or as a preconditioner for iterative solution of equation
(12). In the numerical examples therein, the authors estimated the hydraulic conductivity field of a
laboratory-scale sand box using 6 million MRI-scanned tracer concentration observations directly within a
reasonable time.

Another popular computational method to reduce the data size and computational cost is based on extrac-
tion of temporal moments from large data sets. Researchers have applied such a technique to various data
sets such as transient pressure [Yin and Illman, 2009; Zhu and Yeh, 2006] and concentration breakthrough
curves [Nowak and Cirpka, 2006; Cirpka and Kitanidis, 2000]. Temporal moment based data reduction meth-
ods have been shown to be very efficient in reducing the data. Their major drawback, however, is that the
system response must be integrable (except when using truncated temporal moments), so this approach
cannot be applied to dynamic systems with fluctuating drivers.

In the next section, we describe our approach to reduce the dimensionality of the data while maintaining
the accuracy of the inverse results based on randomization theory. We will demonstrate that our method
has no restrictions with respect to the mathematical properties of the data.

3. Randomized Geostatistical Inverse Modeling

3.1. Randomized Geostatistical Approach
We develop a new randomized geostatistical inversion method to reduce the data dimensionality and
maintain the accuracy of the inversion result. The basic idea of this approach is to construct a sketching
matrix S, then replace the data d with Sd, replace the forward model, f ðTÞ, with Sf ðTÞ, and the additive
noise, �, with S�; and use the PCGA method for inversion. By multiplying all vectors by S, we reduce the
dimensionality (S has many columns, but not that many rows). At a high level, multiplying by the sketching
matrix solves the problems associated with a high-dimensional observation space and the use of the PCGA
method solves the problems associated with a high-dimensional parameter space. By combining these
methods, we solve both problems. Additionally, if a PCGA implementation is available, the randomized geo-
statistical approach is extremely easy to implement in high-level languages such as Julia, Matlab and Python
(our Julia implementation consists of three lines of code).

The misfit function of the randomized geostatistical inversion is given by
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m̂5arg min
m
jjSd2Sf ðmÞjj221kRðmÞ
n o

; (18)

where S 2 Rkred3n is the sketching matrix and kred � n is a tunable reduced dimension. The sketching
matrix is also referred to as a Johnson-Lindenstrauss Transform [Kane and Nelson, 2014; Woodruff, 2014;
Mahoney, 2011; Dasgupta et al., 2010; Clarkson and Woodruff, 2009; Sarlos, 2006]. With the new misfit func-
tion defined in equation (18) and following a similar derivation as in the previous section, the following ran-
domized linear system of equations is obtained

SHQHT ST 1R SHX

ðSHXÞT 0

" #
n

b

" #
5

Sðy2f ð �mÞ1H �mÞ

0

" #
: (19)

At this point, we need to specify R. As discussed above, the forward model can be formulated as:

Sh5Sf ðTÞ1SE; (20)

we can therefore derive the data error covariance matrix R in equation (19) as:

R5E½SEðSEÞT �5SE½ðh2f ðTÞÞðh2f ðTÞÞT �ST 5SRST : (21)

With the randomized linear system of equations given in equation (19) and the covariance matrix in equa-
tion (21), we will have the corresponding solution iterate, which is similar to equation (11)

m̂5Xb1QHT ST n: (22)

Correspondingly, the posterior covariance matrix can be derived similar to Kitanidis and Lee [2014]

V5Q2F; (23)

where

F5XQbbXT 1QHT ST Q21
yy SHQT : (24)

3.2. Selection of the Sketching Matrix
Random projection is one class of methods for low-rank matrix approximation [Yang et al., 2016; Mahoney,
2011]. The idea of random projection is based on the Johnson-Lindenstrauss Lemma [Johnson and
Lindenstrauss, 1984]. In particular, Johnson and Lindenstrauss [1984] pointed out that random projection
yields the property of subspace embedding. Johnson and Lindenstrauss [1984] further provided a strategy to
generate the random projection matrix. With the significant increase of data volumes, recent years have wit-
nessed an explosion of research on so-called randomized numerical linear algebra algorithms, which use
the power of randomization in order to perform standard matrix computations [Yang et al., 2016; Drineas
and Mahoney, 2016; Iyer et al., 2016; Mahoney, 2011; Avron et al., 2010].
3.2.1. Subspace Embedding and Johnson-Lindenstrauss Lemma
Subspace embedding is the core of all randomization-based methods. It is a particular property of any ran-
domization projection built upon the definition of column space, which is provided in the appendix. The
randomized projection matrix (or sketching matrix) S is critical in reducing data dimensionality and preserv-
ing solution accuracy. The role of the sketching matrix can be seen as preconditioning the input data to
spread out or uniformize the information contained in the data [Drineas and Mahoney, 2016]. With an
appropriately selected sketching matrix, the solution to equation (18) yields a highly accurate approxima-
tion to the original problem in equation (3).

In Johnson and Lindenstrauss [1984], theoretical work is provided (through the proof of the Johnson-
Lindenstrauss Lemma) to demonstrate the existence of a projection matrix (sketching matrix) that allows
subspace embedding. Johnson and Lindenstrauss [1984] described the subspace embedding and further
proved that a specially constructed sketching matrix S exists that allows to project with high (asymptotic)
probability, N points in high-dimensional space to a much lower dimension without losing essential infor-
mation. We provide the visualization of the Johnson-Lindenstrauss bounds to better illustrate the relation
between the number of observations and the value of kred with respect to the distortion rate �, which is
defined in definition A.2 of the Appendix A. Specifically, Figure 1a shows a plot of the minimum kred versus
the number of observation, n, for different distortion rates �. Figure 1b shows a plot of the minimum
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number of kred versus the distortion rate � for different number of observations. From Figure 1a, we can see
the larger the number of observations, the larger the value of kred required to preserve a given distortion
rate. Similarly, in Figure 1b, with the number of observations fixed, the larger the value of kred, the smaller
the distortion rate becomes.
3.2.2. Construction and Selection of Sketching Matrix
Practically, various methods have been proposed to construct the sketching matrix, S [Drineas and Mahoney,
2016; Mahoney, 2011]. The most important criteria for construction and selection of the sketching matrix
are based on computational complexity, the ability to apply it to arbitrary data, and the quality of data
reduction.

Sketching matrices can be categorized into two types, those based on projection and those based on sam-
pling [Drineas and Mahoney, 2016; Mahoney, 2011]. Sampling-based sketching matrices are easy to imple-
ment. However, these methods are data dependent, and, therefore, may not provide robust reduction
performance. Projection-based sketching matrices can be applied to arbitrary data. Two of the widely used
sketching matrices are obtained using Gaussian projection or a randomized Hadamard transform. The
Gaussian projection sketching matrix can be represented by independent identically distributed (i.i.d.)
Gaussian random variables, i.e., matrix values drawn from the standard Gaussian distribution [Drineas and
Mahoney, 2016]. The randomized Hadamard transform sketching matrix is represented by a product of two
matrices, a random diagonal matrix with 11 or 21 on each diagonal entry, each with probability 1/2, and
the Hadamard-Walsh matrix [Ailon and Chazelle, 2010]. There are other construction methods of sketching
matrices designed for specific cases. In Avron et al. [2010], the construction of the sketching matrix is the prod-
uct of a random diagonal matrix and the discrete cosine transform. In Iyer et al. [2016], a specific sketching
matrix is designed for solving large-scale and sparse systems. In this work, we employ the randomization
matrix scheme similar to the one used in Le et al. [2017] considering its simplicity to implement, its indepen-
dence from the data, and stronger conditioning properties than other sketching matrices [Drineas and
Mahoney, 2016]. Hence, the Gaussian random projection matrix S 2 Rkred3n can be represented by

S5
1ffiffiffi

n
p G; (25)

where G is sampled i.i.d. from Nð0; 1Þ.

3.3. Randomized Geostatistical Inversion Algorithm
To summarize our new randomized geostatistical inversion algorithm, we provide a detailed description of
the algorithm below.

Figure 1. Johnson-Lindenstrauss bounds: (a) minimum kred versus the number of observation, n, for different distortion rates �;
(b) minimum number of kred versus the distortion rate � for different number of observations, n. Clearly, an increase in n requires an
increase in kred to preserve a given distortion rate �.
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Both direct linear solvers and iterative solvers can be utilized to solve the reduced linear system of equa-
tions in equation (19). Considering that, in most cases, the reduced linear system of equations usually yields
relatively small system matrices, we use a direct solver to solve the reduced linear system of equations.

4. Computational and Memory Cost Analysis

To better understand the cost of our new randomized geostatistical inversion algorithm, we provide both the com-
putational and memory cost analysis of our method. We assume that the number of model parameters is ~m, the
number of observations is ~n, hence the size of the Jacobian matrix H 2 R~n3 ~m and the covariance matrix
Q 2 R ~m3 ~m . We also denote the rank of the sketching matrix by kred. The drift matrix X 2 R ~m3~p . As a reference
method, we select the method of PCGA, which is developed in Kitanidis and Lee [2014] and Lee and Kitanidis [2014].

4.1. Computational Cost
Considering that most of the numerical operations in Algorithm 1 involve only matrix and vector operations, we
use the floating point operations per second (FLOPS) and the big-O notation to quantify the computational cost
[Golub and Van Loan, 1996]. In numerical linear algebra, basic linear algebra subprograms (BLAS) are categorized
into three levels. Level-1 operations involve an amount of data and arithmetic that is linear in the dimension of the
operation. Those operations involving a quadratic amount of data and a quadratic amount of work are Level-2 oper-
ations [Golub and Van Loan, 1996]. Following this notation and given a vector of length n and a matrix size of n 3 n,
vector dot-product, addition and subtraction are examples of BLAS Level-1 operations (BLAS 1). They involveOðnÞ
amount of data andOðnÞ amount of arithmetic operations. Matrix-vector multiplication is a BLAS Level-2 operation
and it involvesOðn2Þ amount of data andOðn2Þ amount of arithmetic operations. Matrix-matrix multiplication is a
BLAS Level-3 operation and it involvesOðn2Þ amount of data andOðn3Þ amount of arithmetic operations.

First, we provide the computational cost of the PCGA method followed by the computational cost of RGA
method, PCGA employs a matrix-free iterative approach (equations (13–16)) for solving the cokriging sys-
tem in equation (12). The total computational cost is [Lee and Kitanidis, 2014]:

COMPPCGA � Oðs~n kÞ; (26)

where s is the iteration number, and k is the rank of the approximated covariance matrix Qk in equation
(14). Because of the randomization technique used in the RGA method, the size of the system matrix in

Algorithm 1: Randomized Geostatistical Approach (RGA)

Require: kred; n0, and b0; IterCountmax;

Ensure: mðkÞ

1: Initialize found5false;

2: Initialize kred; n0, and b0;

3: Generate the sketching matrix according to section 3.2;

4: Obtain the data-reduced problem according to equation (20);

5: Update the data covariance matrix R according to equation (21);

6: while {ðnot foundÞ and ðIterCount < IterCountmaxÞ} do

7: Solve for the solution of the reduced linear system of equations in equation (19);

8: Update the iterate according to equation (22);

9: if {Stopping criterion are satisfied} then

10: found5true;

11: Return with current iterate m̂;

12: end if

13: end while
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equation (19) has been significantly reduced. Therefore, direct linear solver such as QR factorization is feasi-
ble for solving the linear system of equations in equation (19) [Golub and Van Loan, 1996]. Using QR-
factorization to solve equation (19), the computational cost of the RGA method is given by:

COMPRGA Direct � Oððkred1~pÞ3Þ1Oððkred1~pÞ2Þ; (27)

where the first term corresponds to the cost of QR factorization, and the second term is the cost to form the
right-hand side and the cost to perform the back substitution. As an alternative, we can also employ the
matrix-free iterative approach to solve equation (19) as done in the PCGA method. The resulting computa-
tional cost then is given by:

COMPRGA Iterative � Oðs k kredÞ: (28)

By comparing to equations (27) and (28), we observe that the RGA method is more efficient. However,
it should be noted here that this analysis only explores the computational cost of the linear algebra
associated with performing an iteration of the inverse analysis. The overall computational cost should
also include the computational cost for solving the forward model repeatedly. However, when PCGA is
used and ~n is sufficiently large, the computational cost associated with the linear algebra operations
dominate. By reducing the cost of the linear algebra operations, RGA results in a situation where the
computational cost of repeatedly solving the forward model is the dominant cost in the inverse
analysis.

4.2. Memory Cost
Both the RGA and PCGA methods rely on dense matrix storage. Hence, the major memory cost is that used
to store the matrices. Out of all these matrices, the largest matrices required to be stored are Z and HZ in
equations (14) and (16) for the PCGA method or the matrix in equation (19) for our method. The dimensions
of system matrices Z and HZ are Z 2 R~m3k and HZ 2 R~n3k . Hence, the total memory cost of the PCGA
method will be:

MEMPCGA � Oðð ~m1~nÞ � kÞ: (29)

Similarly, we can also calculate the dimension of the corresponding linear system of equations in equation
(19) for our method. Provided with a rank kred sketching matrix, the dimension of the resulting linear system
of equations will be Rðkred1~pÞ3ðkred1~pÞ. Hence, the total memory cost including both the sketching matrix and
linear system of equations is:

MEMRGA � O ðkred1~pÞ3ðkred1~pÞ1~n3kredð Þ: (30)

Comparing equation (30) to equation (29), we see that the memory cost of our method is approximately
j � kred=k of that of the PCGA method. Practically, the sketching matrix can be generated ‘‘on-the-fly.’’ It
means that instead of constructing the sketching matrix explicitly, we can generate the elements of the
sketching matrix implicitly, therefore, the storage of the sketching matrix can mostly be saved, which
results in a cost of

MEMRGA � O ðkred1~pÞ3ðkred1~pÞð Þ: (31)

Despite the considerably lower memory cost, the implementations of our method on top of PCGA are
straightforward.

5. Numerical Results

In this section, we provide numerical examples to demonstrate the efficiency of our new randomized geo-
statistical inversion algorithm. A synthetic model study using transient groundwater flow is developed
where the ‘‘observed’’ hydraulic heads were taken from a solution of the groundwater equation using a ref-
erence transmissivity field with the addition of noise. To have a comprehensive comparison, we provide
four sets of tests. In section 5.1, we provide a convergence test of our method. In section 5.2, we report the
performance of our method as a function of the number of rows, kred, in the sketching matrix. In section 5.3,
we test the robustness of our method with a view on the randomness of the sketching matrix. In section
5.4, we test our method on inverse problems with an increasing number of measurements up to 107. An
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important parameter in the PCGA method is the number of principal components (rank), RPCGA. In all the
tests using the PCGA method, we set RPCGA5120.

We select Julia as our programming tool because of its efficiency and simplicity. Julia is a high-level pro-
gramming language designed for scientific computing [Bezanson et al., 2014]. The Julia code for our RGA
algorithm is available as a part of the open-source release of the Julia version of MADS (Model Analysis and
Decision Support) at ‘‘http://mads.lanl.gov’’ [Vesselinov et al., 2015]. The methods of the QR factorization and
fundamental BLAS operations are all implemented using the system routines provided in the Julia packages.
As for the computing environment, we run the first three sets of tests on a computer with 40 Intel Xeon
E5–2650 cores running at 2.3 GHz, and 64 GB memory, and the last set of tests on a higher-memory
machine with 64 AMD Opteron 6376 cores running at 2.3 GHz and 256 GB of memory.

The stopping criterion is an important issue for any iterative method including our method. We use the fol-
lowing two stopping criteria

jjmðk11Þ2mðkÞjj22=jjmðkÞjj
2
2 � TOL; (32)

and

Iter � IterMAX ; (33)

where TOL51026, and Iter is the iteration count. IterMAX 5 50 is the maximum number of iterations. If either
equation (32) or equation (33) is satisfied, the iteration procedure is stopped and convergence is declared.

Table 1. Settings for the Calibration Used for the RGA Calibration

Parameter Value(s) Notes

Observation noise Nðl50; r50:01Þ
Observations per well per pumping test 1000
Number of observation/pumping wells 4–10 See Figures 3 and 9 for locations
Prior covariance for T r � 4:5; k50:2 Exponential model
True heterogeneity of log 10T l50:5; r51=2 Fractal model

Figure 2. Illustration of the randomization matrix used in the presented analyses with dimension kred3n5256316; 000. The elements of
the randomization matrix follow equation (25), a scaled normal distribution with mean 0 and standard deviation 1. Because of the width
limitation of the page, we only show the first 1000 columns of the randomization matrix.

Figure 3. Synthetic log-transmissivity field (a) with variance r2
m50:5 and power bm523:5. Hydraulic conductivity and hydraulic head

observation locations are indicated with circles. The results of the inverse modeling solved by (b) PCGA and (c) our RGA algorithm are
shown. They are visually similar to each other. The RME values of the results in Figures 3b and 3c are 0.28 and 0.33, respectively. Hence,
our RGA method yields comparable result to that obtained using the PCGA method.
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5.1. Test of the Convergence
In our first numerical example, we
test the convergence of our new
method. The reference model is
solved on a grid containing 2-D
100 3 100 head nodes and a total
of 20,200 model parameters (100
3 101 log-transmissivities along
the x axis, 101 3 100 log-
transmissivities along the y axis).
Table 1 describes the model setup
in more detail. We generate a
ground truth, which is shown in
Figure 3a. We utilize the variance
(r2

m) and an exponent (bm—related
to the fractal dimension of the field
and the power law of the field’s
spectrum) to characterize the het-
erogeneity of the considered fields
[Peitgen and Saupe, 1988]. In this
example, we set the variance to r2

m

50:5 and the power exponent to
bm523:5. The total number of
measurements generated in this
test is 16,000, which come from
running the transient simulation to
simulate pumping tests at each
well (a total of four tests) and
acquiring data at all four locations
(four sets of data for each test). In
each test, 1000 hydraulic head
observations are recorded at each
well.

We illustrate one of the randomiza-
tion matrices in Figure 2. The
dimension of the randomization
matrix is kred3n5256316; 000.
The elements of the randomization
matrix follow equation (25), a
scaled normal distribution with
mean 0 and standard deviation 1.
Because of the width limitation of

the page, we only show the first 1000 columns of the randomization matrix. We set the color scale of Figure
2 in the range ð20:01; 0:01Þ to enhance the visualization of the randomized matrix.

Figure 3b illustrates the result using the PCGA method and the Figure 3c shows the results for our method.
Compared to the true model in Figure 3a, our method obtains a good result, representing both the high
and low log-transmissivity regions. Visually, our method yields a comparable result to the one obtained using
the PCGA method in Figure 3b.

To further quantify the error of the two inverse modeling methods, we calculate both the relative-model-
error (RME) and relative-data-error (RDE) of the inversion results

RMEðmÞ5 jjm2mref jj2ffiffiffiffi
m
p

3stdfield
; (34)

Figure 4. Convergence of the PCGA (in black) and our RGA (in blue) algorithms in
terms of iteration steps. The rates of convergence for these two methods are very
close to each other. However, the computational time of two methods to reach con-
vergence are very different. In this case, PCGA converged for about 32,000 s, while
RGA convergence took only 1020 s. The RGA speed-up is about 31 times.
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RDEðdÞ5 jjd2drecjj2ffiffiffi
n
p

3stdnoise
; (35)

where m is the inverted transmis-
sivity field and mref is the refer-
ence transmissivity field, m is the
size of the model, and stdfield is
the prior standard deviation of the
field, n is the size of the data,
stdnoise is the standard deviation of
the additive noise, d are the simu-
lated data and drec are the obser-
vations used for inversion.

We provide a plot of the rate of
convergence of the PCGA
method and our RGA method in
Figure 4. We observe that both
our method and the PCGA yield
a very similar rate of conver-
gence as a function of the num-
ber of iterations steps. At each
iteration, the methods yield simi-
lar relative data error and model
error values. After convergence,
the RME values of our RGA
method and PCGA method are
0.33 and 0.28, respectively.
Therefore, together with the
inversion result in Figure 3, this
demonstrates that our RGA
method yields a comparable
accuracy to the PCGA method in
a situation where both methods
can be applied. We note, how-
ever, that one of the main bene-
fits of the RGA method is that it
can be applied in situations with
a very large number of observa-
tions and yield accurate results
and efficient performance. In this

example, it took RGA only about 1300 s to converge, spending 1210 s on forward modeling and only
0.03 s on inversion.

5.2. Test on the Rank of the Sketching Matrix
The rank of the random sketching matrix kred is critical to the accuracy and efficiency of our RGA method. In
this section, we test our algorithm using sketching matrices with different rank values. The values of kred

used in the problem are 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, and 8192.

In Figure 5, we provide the RME value and the RDE value as a function of kred. We notice that, the
larger kred becomes, the smaller the error of the inversion. In addition, there is a significant decrease
in the RME values with increasing kred for low values of kred, which means that the inversion results
are improving. In particular, the inversion results are completely off when kred is 4. When kred5256,
the RME starts to level off while the RDE continues to decrease. Even though the data misfit of the
inversion becomes smaller with increasing kred, hardly any useful information is introduced into the
results.

Figure 5. (a) RME and (b) RDE curves as defined in equations (34) and (35), respectively.
For kred increasing from 4 to 256, there is a significant decrease in RME. For kred 	 256,
the RME curve starts to level off while RDE curve still reduces.
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Figure 6 shows the correspond-
ing wall time cost for different
values of kred. It can be
observed that the time is quite
stable around 500 s until
kred52048, where the CPU time
increases to about 550 s. When
kred58192, the CPU time cost is
2902 s. This can be explained by
the fact that when kred is rela-
tively small, the CPU time is
mostly dominated by the for-
ward modeling operations; while
as kred increases, the linear solver
for the system in equation (19)
starts to dominate.

From this test, we conclude that
the optimal selection of the kred

value ranges from 256 to 1024
considering factors including
model error, data misfit, as well
as the corresponding time cost.
In general, when choosing the

value of kred, one would want to choose a value that is large enough to produce accurate results (i.e., large
enough to be in the flat portion of Figure 5a) and small enough so that the method is computationally effi-
cient (i.e., small enough to be in the flat portion of Figure 6).

5.3. Test on the Randomness of the Sketching Matrix
Because of the random nature of our method, the resulting inversion can fluctuate among different realiza-
tions of the sketching matrix. In this test, we provide the inversion results and corresponding analysis using
various sketching matrices. We use the same model set up as in Test 5.1. We generate 20 different realiza-
tions of the sketching matrix with kred5256. Each of them is drawn from the Gaussian distribution with
mean 0.0 and variance 1.0 according to equation (25). After convergence of each inversions, we calculated

the relative data errors and relative
model errors according to equa-
tions (34) and (35). The results in
Figure 7 show that 19 out of 20
inversion runs converged. This
shows that the random nature of
the sketching matrix may lead to
convergence failure in certain cases.
Therefore, a safeguard will be nec-
essary to prevent unconverged
inversion results. One option is to
use cluster analysis on the scatter
plot in Figure 7 in order to detec-
tion inversion results that did not
properly converge. However, this
option can be computationally
more expensive in that we need to
postpone our decision until after all
the computation is completed. An
alternative is to access convergence
directly from the inversion results

Figure 6. CPU time cost as a function of kred. The CPU time is quite stable around 500 s for
kred � 1024. The time cost dependency on kred can be explained by the fact that when
kred is relatively small, the CPU time is mostly dominated by the forward modeling
operation, while as kred increases, the linear solver for the solution of the system in
equation (19) starts to dominate.

Figure 7. Plot of relative data errors versus relative model errors according to equa-
tions (34) and (35) using 20 different realizations of sketching matrices. The sketching
matrices leading to converged inversion results are shown in blue. In contrast, those
leading to diverged results are shown in blue.
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using the convergence of the itera-
tion. Specially, we provide a plot of
RDE as a function of iteration num-
ber for the nonconverged inversion
run in Figure 8. We observe that the
RDE fluctuates between two values,
and does not decrease as expected.
Hence, this type of convergence plot
can be utilized as a safeguard during
the computation to avoid sketching
matrices that lead to nonconverged
inversion results. From this test, we
conclude that even though a small
number of realizations of the sketch-
ing matrix may lead to inappropriate
inversion results, in most cases our
method yields accurate results.

5.4. Test on the Number of
Observations
To better understand the scalability
of our method, we test RGA on a set
of inverse problems that have an

increasing number of observations. Specifically, we test our algorithm on inverse problems where the number
of observations is equal to 2:563105; 6:253105; 1:2963106; 2:4013106; 4:0963106; 6:5613106, and
1:03107. As before, the observations come from simulating a series of pumping tests and recording ‘‘observa-
tions’’ at a number of monitoring wells. For each observation well, there are 1000 observations for each pump-
ing test. The increasing number of observations comes from increasing the number of pumping tests and the
number of observation wells. For example, the case with 2:563105 observations involves 16 pumping tests
and 16 observations wells while the case with 1:03107 involves 100 pumping tests and 100 observation wells.
The reference transmissivity field is same as the one as in Figure 3a. The value of kred is again set to 256.

Through our analysis on memory
cost in section 4.2, we observe that
both our RGA method and the
PCGA method can be comparable if
we construct the sketching matrix
explicitly. However, our RGA
method can be more memory effi-
cient than the PCGA method when
we generate the sketching matrix
‘‘on-the-fly.’’ Using RGA, we are able
to perform the inverse analysis with
10 million observations. We tested
our RGA method on all the problem
sizes mentioned above and provide
the corresponding results where
the number of observations is
2:563105; 4:0963106, and 1:03

107 in Figure 9. We notice that our
RGA method yields reasonable
inversion results even when the
size of the data sets becomes mas-
sive. The RME values of the inver-
sion results in Figures 9b–9d are

Figure 8. Plot of convergence corresponding to the failure scenario indicated by the
red scatter shown in Figure 7. The convergence plot can be utilized as a safeguard
during the computation to discard the realization of a sketching matrix that will lead
to a diverged result.

Figure 9. (a) The ‘‘true’’ field and (b) inversion results of our RGA method with differ-
ent numbers of observations including 2:563105, (c) 4:0963106, and (d) 1:03107.
Our RGA method yields reasonable inversion results when the size of the data sets
becomes massive. As a comparison, the PCGA method fails in all three cases of (b–d)
because of the insufficient memory.
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0.26, 0.23, and 0.25, respec-
tively. The availability of more
measurements, in general, may
lead to a better inversion. How-
ever, in our tests, data can be
significantly redundant. Adding
more data without increasing
kred may not result in an
improved inverse model. This
explains what we observe in
Figure 9, where the quality of
the inverse models is similar.
Finally, as a comparison, the
PCGA method fails in all three
cases of Figures 9b–9d because
of the insufficient memory. This
is due in part to our use of off-
the-shelf matrix data structures
and matrix-vector multiplication
operators for the PCGA
implementation and could be
alleviated with the use of cus-
tom matrix data structures and
matrix-vector multiplication
operators.

We also provide the wall time costs of our method with different numbers of observations in Figure 10. Fig-
ure 10 shows both the wall time to perform the model calibration with RGA and the wall time to perform a
single model run. Independent of problem size, the time to perform the full model calibration takes �28
times as long as performing a single model run and this could be reduced further with more CPU cores.
Also we notice that the computational cost of RGA scales well with the number of observations. Through
this test, we conclude that our method can more readily calibrate models with a large number of observations
compared to the PCGA method when off-the-shelf matrices and matrix-vector operations are used.

6. Conclusion

We have developed a computationally efficient, scalable, and implementation-friendly randomized geostat-
istical inversion method, which is especially suitable for inverse modeling with a large number of observations.
Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal compo-
nent geostatistical approach (PCGA). To overcome the issues of excessive memory and computational cost
that arise when dealing with a large number of observations, we incorporated a randomized sketching matrix
technique into PCGA. The randomization method can be seen as a data-reduction technique, because it generates
a surrogate system that has a much lower dimension than the original problem.

Through our computational cost analysis, we show that this matrix sketching technique reduces both the
memory and computational costs significantly. Compared to the PCGA method, our RGA method yields a
much smaller problem to solve when computing the next step in the iterative optimization process, therefore
reducing both the memory and computational costs. We demonstrate through our numerical example that our
RGA method yields rather efficient computational and memory costs, which can be scaled with the information
content of the applied observation data in the inverse process (the computational and memory costs of the
RGA inverse analyses do not scale directly with the size of the observation data). It is reasonable to conclude
that the efficiency improvement can be significant when the size of the data set increases.

In summary, with an ever-increasing amount of data being assimilated into hydrogeologic models, there
is a need to develop an inverse method that is able to handle a large number of observations. Our
RGA method addresses this need. The contribution of our work is to incorporate a randomized numerical

Figure 10. Wall-clock times to perform the model calibration with our RGA method and to
perform a single model run. These times are shown for inverse analyses where the number
of observations is 2:563105; 6:253105; 1:2963106; 2:4013106; 4:0963106; 6:5613106,
and 1:03107. For all these analyses, which vary over two orders of magnitude, the time to
perform the full model calibration takes 28 times as long as performing a single model run
and this could be reduced further with more CPU cores. The cost of an individual run
increases because more the time that is simulated increases to account for a larger
number of pumping tests.
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linear algebra technique into the PCGA method. Through both a computational cost analysis and numerical
tests, we show theoretically and numerically that our RGA method is computationally efficient and capable of
solving inverse problems with Oð107Þ observations using modest computational resources (approximately
10 US dollars if state-of-the-art cloud services are employed). Therefore, it shows great potential for characteriz-
ing subsurface heterogeneity for problems with a large number of observations.

The RGA method is coded in Julia and implemented in the MADS open-source high-performance computa-
tional framework (http://mads.lanl.gov). However, the implementation of RGA is relatively simple, and can be
easily added to any existing code. Finally, the randomization method is not limited to hydrogeologic problems
and applications. Being a successful data/dimensionality reduction technique, randomization can be applied to
a broad set of applications in many science and engineering domains.

Appendix A: Definitions of Column Space and Subspace Embedding

A.1. Definition: Column Space
Consider a matrix A 2 Rn3d ðn > dÞ. Notice that as one ranges over all vectors x 2 Rd; Ax ranges over all
linear combinations of the columns of A and therefore defines a d-dimensional subspace of Rn, which we
refer to as the column space of A and denote it by CðAÞ.

With the column space defined in definition A.1, the definition of subspace embedding can be provided as:

A.2. Definition: Subspace Embedding
A matrix S 2 Rr3n provides a subspace embedding for CðAÞ if jjSAxjj225ð16�ÞjjAxjj22; 8x 2 Rd , such a S pro-
vides a low distortion embedding, and is called subspace embedding.
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